explainability
decomposition: decompose the prediction
gradient-based: gradient w.r.t the input graph to identify the importance of the input portions
surrogate: fit a model based on the input and output
generation-based: synthesize the crucial patterns customized for an input, or generate key structures to globally explain the behavior of model predictions
perturbation-based: remove the unimportant edges and nodes so that the final prediction remains unchanged under such perturbations
counterfactual-based: identify the minimal substructure of the input which would change the original prediction if removed
self-explainable: make predictions and generate the corresponding explanations during the inference time, simultaneously
FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning (KDD 2022 best paper)
GNN的联邦学习框架,主要是弥补这个研究方向的空缺,GNN的联邦学习要传输的东西和正常的联邦学习不太一样,感觉主要的不同就是这里。
图数据集的切分和FGL算法都有支持。
论文总结了联邦图学习的几个不同点:
- 传的数据是异构的,client之间的交互行为丰富很多;
- 切分数据集的挑战很多;
论文在阿里的电商推荐上用了这个联邦图学习框架,有提升。